Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(3): 59, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329578

RESUMO

KEY MESSAGE: The first-time generation of hexaploid triticale plants harbouring variable panels of novel mutations in gene families involved in starch biosynthesis has been achieved by the subgenome-independent multiplexed CRISPR/Cas9-mediated editing.


Assuntos
Sistemas CRISPR-Cas , Triticale , Sistemas CRISPR-Cas/genética , Mutagênese/genética
2.
Biomolecules ; 13(12)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136646

RESUMO

In light of recent climate change, with its rising temperatures and precipitation changes, we are facing the need to increase the valuable crop's tolerance against unfavorable environmental conditions. Emmer wheat is a cereal crop with high nutritional value. We investigated the possibility of improving the stress tolerance of emmer wheat by activating the synthesis of the stress hormone jasmonate by overexpressing two genes of the jasmonate biosynthetic pathway from Arabidopsis thaliana, ALLENE OXIDE SYNTHASE (AtAOS) and OXOPHYTODIENOATE REDUCTASE 3 (AtOPR3). Analyses of jasmonates in intact and mechanically wounded leaves of non-transgenic and transgenic plants showed that the overexpression of each of the two genes resulted in increased wounding-induced levels of jasmonic acid and jasmonate-isoleucine. Against all expectations, the overexpression of AtAOS, encoding a chloroplast-localized enzyme, does not lead to an increased level of the chloroplast-formed 12-oxo-phytodienoic acid (OPDA), suggesting an effective conversion of OPDA to downstream products in wounded emmer wheat leaves. Transgenic plants overexpressing AtAOS or AtOPR3 with increased jasmonate levels show a similar phenotype, manifested by shortening of the first and second leaves and elongation of the fourth leaf, as well as increased tolerance to osmotic stress induced by the presence of the polyethylene glycol (PEG) 6000.


Assuntos
Arabidopsis , Triticum , Triticum/genética , Pressão Osmótica , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética
3.
Plants (Basel) ; 12(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37653967

RESUMO

12-Oxophytodienoate reductase is the enzyme involved in the biosynthesis of phytohormone jasmonates, which are considered to be the major regulators of plant tolerance to biotic challenges, especially necrotrophic pathogens. However, we observe compromised tolerance to the necrotrophic fungal pathogen Botrytis cinerea in transgenic hexaploid bread wheat and tetraploid emmer wheat plants overexpressing 12-OXOPHYTODIENOATE REDUCTASE-3 gene from Arabidopsis thaliana, while in Arabidopsis plants themselves, endogenously produced and exogenously applied jasmonates exert a strong protective effect against B. cinerea. Exogenous application of methyl jasmonate on hexaploid and tetraploid wheat leaves suppresses tolerance to B. cinerea and induces the formation of chlorotic damages. Exogenous treatment with methyl jasmonate in concentrations of 100 µM and higher causes leaf yellowing even in the absence of the pathogen, in agreement with findings on the role of jasmonates in the regulation of leaf senescence. Thereby, the present study demonstrates the negative role of the jasmonate system in hexaploid and tetraploid wheat tolerance to B. cinerea and reveals previously unknown jasmonate-mediated responses.

4.
Front Plant Sci ; 13: 1048695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544871

RESUMO

In cereals, the vernalization-related gene network plays an important role in regulating the transition from the vegetative to the reproductive phase to ensure optimal reproduction in a temperate climate. In hexaploid bread wheat (Triticum aestivum L.), the spring growth habit is associated with the presence of at least one dominant locus of VERNALIZATION 1 gene (VRN-1), which usually differs from recessive alleles due to mutations in the regulatory sequences of the promoter or/and the first intron. VRN-1 gene is a key regulator of floral initiation; various combinations of dominant and recessive alleles, especially VRN-A1 homeologs, determine the differences in the timing of wheat heading/flowering. In the present study, we attempt to expand the types of VRN-A1 alleles using CRISPR/Cas9 targeted modification of the promoter sequence. Several mono- and biallelic changes were achieved within the 125-117 bp upstream sequence of the start codon of the recessive vrn-A1 gene in plants of semi-winter cv. 'Chinese Spring'. New mutations stably inherited in subsequent progenies and transgene-free homozygous plants carrying novel VRN-A1 variants were generated. Minor changes in the promoter sequence, such as 1-4 nucleotide insertions/deletions, had no effect on the heading time of plants, whereas the CRISPR/Cas9-mediated 8 bp deletion between -125 and -117 bp of the vrn-A1 promoter shortened the time of head emergence by up to 2-3 days. Such a growth habit was consistently observed in homozygous mutant plants under nonvernalized cultivation using different long day regimes (16, 18, or 22 h), whereas the cold treatment (from two weeks and more) completely leveled the effect of the 8 bp deletion. Importantly, comparison with wild-type plants showed that the implemented alteration has no negative effects on main yield characteristics. Our results demonstrate the potential to manipulate the heading time of wheat through targeted editing of the VRN-A1 gene promoter sequence on an otherwise unchanged genetic background.

5.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36613806

RESUMO

Sharka disease, caused by the Plum pox virus (PPV), is one of the most harmful, quarantine viral diseases that affect stone fruit crops. The absence of natural resistance to the virus in stone fruits has become a decisive factor for the use of genetic transformation methods to obtain stable forms. The eIF(iso)4G and eIF(iso)4E genes encode translation initiation factors used in the PPV life cycle. In the presented study, the effect of silencing these genes using the RNA interference method on the resistance of sour cherry rootstock 146-2 plants (Prunus pumila L. x Prunus tomentosa Thunb) to the sharka disease was studied. Two vectors have been created for the genetic transformation of plants, with self-complementary sequences of the eIF(iso)4G and eIF(iso)4E gene fragments. The hairpin expression cassette contains a strong promoter of the peach ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) gene, as well as an intron and terminator of the same gene. We used the pMF1 vector containing recombinase R and a codA-nptII gene which makes it possible to obtain intragenic marker-free plants. A successful genetic transformation was carried out by the AGL0 strain of A. tumefaciens. Whole leaves of shoots cultivated in vitro were used as a source of explants. Eight independent transgenic lines of rootstock 146-2 were obtained in experiments (sixlines with a hairpin to the eIF(iso)4G gene and two lines with a hairpin to the eIF(iso)4E gene). Their status was confirmed by the PCR and Southern blotting. The obtained plants were acclimatized in a greenhouse. The silencing of the eIF(iso)4G and eIF(iso)4E genes in transgenic plants was confirmed by the quantitative PCR. The presence of specific small interfering (si) RNAs was confirmed by the method of Northern blotting. Plants of all transgenic rootstock lines were infected with PPV by the method of grafting with infected buds. Resistance to the PPV infection of the obtained transgenic plants was carried out by using an enzyme immunoassay. The ELISA results showed that silencing the eIF(iso)4G gene did not lead to increased resistance while silencing the eIF(iso)4E factor gene led to increased resistance to the PPV, and the one line's plants showed no signs of infection for two years after infecting. The work demonstrates a (promising) approach in which the creation of stone cultures resistant to the plum pox virus can be achieved by suppressing the genes of translation initiation factors in clonal rootstocks.


Assuntos
Vírus Eruptivo da Ameixa , Prunus avium , Prunus , Prunus avium/genética , Inativação Gênica , Interferência de RNA , Vírus Eruptivo da Ameixa/genética , RNA Interferente Pequeno/genética , Plantas Geneticamente Modificadas , Prunus/genética , Fatores de Iniciação de Peptídeos/genética , Doenças das Plantas/genética , Resistência à Doença/genética
6.
3 Biotech ; 11(5): 209, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33927997

RESUMO

The production of recombinant proteins in transgenic plants is becoming an increasingly serious alternative to classical biopharming methods as knowledge about this process grows. Wolffia arrhiza, an aquatic plant unique in its anatomy, is a promising expression system that can grow in submerged culture in bioreactors. In our study 8550 explants were subjected to Agrobacterium-mediated transformation, and 41 independent hygromycin-resistant Wolffia lines were obtained, with the transformation efficiency of 0.48%. 40 of them contained the hirudin-1 gene (codon-optimized for expression in plants) and were independent lines of nuclear-transformed Wolffia, the transgenic insertion has been confirmed by PCR and Southern blot analysis. We have analyzed the accumulation of the target protein and its expression has been proven in three transgenic lines. The maximum accumulation of recombinant hirudin was 0.02% of the total soluble protein, which corresponds to 775.5 ± 111.9 ng g-1 of fresh weight of the plant. The results will be used in research on the development of an expression system based on Wolffia plants for the production of hirudin and other recombinant pharmaceutical proteins.

7.
Front Plant Sci ; 12: 621954, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33597963

RESUMO

In stone fruit trees, resistance to Plum pox virus (PPV) can be achieved through the specific degradation of viral RNA by the mechanism of RNA interference (RNAi). Transgenic virus-resistant plants, however, raise serious biosafety concerns due to the insertion and expression of hairpin constructs that usually contain various selective foreign genes. Since a mature stone tree represents a combination of scion and rootstock, grafting commercial varieties onto transgenic virus-tolerant rootstocks is a possible approach to mitigate biosafety problems. The present study was aimed at answering the following question: To what extent are molecular RNAi silencing signals transmitted across graft junctions in transgrafted plum trees and how much does it affect PPV resistance in genetically modified (GM)/non-transgenic (NT) counterparts? Two combinations, NT:GM and GM:NT (scion:rootstock), were studied, with an emphasis on the first transgrafting scenario. Viral inoculation was carried out on either the scion or the rootstock. The interspecific rootstock "Elita" [(Prunus pumila L. × P. salicina Lindl.) × (P. cerasifera Ehrh.)] was combined with cv. "Startovaya" (Prunus domestica L.) as a scion. Transgenic plum lines of both cultivars were transformed with a PPV-coat protein (CP)-derived intron-separate hairpin-RNA construct and displayed substantial viral resistance. High-throughput sequence data of small RNA (sRNA) pools indicated that the accumulation of construct-specific small interfering RNA (siRNA) in transgenic plum rootstock reached over 2%. The elevated siRNA level enabled the resistance to PPV and blocked the movement of the virus through the GM tissues into the NT partner when the transgenic tissues were inoculated. At the same time, the mobile siRNA signal was not moved from the GM rootstock to the target NT tissue to a level sufficient to trigger silencing of PPV transcripts and provide reliable viral resistance. The lack of mobility of transgene-derived siRNA molecules was accompanied by the transfer of various endogenous rootstock-specific sRNAs into the NT scion, indicating the exceptional transitivity failure of the studied RNAi signal. The results presented here indicate that transgrafting in woody fruit trees remains an unpredictable practice and needs further in-depth examination to deliver molecular silencing signals.

8.
BMC Plant Biol ; 20(Suppl 1): 442, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33050908

RESUMO

BACKGROUND: The ability to engineer cereal crops by gene transfer technology is a powerful and informative tool for discovering and studying functions of genes controlling environmental adaptability and nutritional value. Tetraploid wheat species such as emmer wheat and Timopheevi wheat are the oldest cereal crops cultivated in various world areas long before the Christian era. Nowadays, these hulled wheat species are gaining new interest as donors for gene pools responsible for the improved grain yield and quality, tolerance for abiotic and biotic stress, resistance to pests and disease. The establishing of efficient gene transfer techniques for emmer and Timopheevi wheat may help in creation of modern polyploid wheat varieties. RESULTS: In the present study, we describe a robust protocol for the production of fertile transgenic plants of cultivated emmer wheat (Russian cv. 'Runo') using a biolistic delivery of a plasmid encoding the gene of green fluorescent protein (GFP) and an herbicide resistance gene (BAR). Both the origin of target tissues (mature or immature embryos) and the type of morphogenic calli (white or translucent) influenced the efficiency of stable transgenic plant production in emmer wheat. The bombardment of nodular white compact calluses is a major factor allowed to achieve the highest transformation efficiency of emmer wheat (on average, 12.9%) confirmed by fluorescence, PCR, and Southern blot. In the absence of donor plants for isolation of immature embryos, mature embryo-derived calluses could be used as alternative tissues for recovering transgenic emmer plants with a frequency of 2.1%. The biolistic procedure based on the bombardment of immature embryo-derived calluses was also successful for the generation of transgenic Triticum timopheevii wheat plants (transformation efficiency of 0.5%). Most of the primary events transmitted the transgene expression to the sexual progeny. CONCLUSION: The procedures described here can be further used to study the functional biology and contribute to the agronomic improvement of wheat. We also recommend involving in such research the Russian emmer wheat cv. 'Runo', which demonstrates a high capacity for biolistic-mediated transformation, exceeding the previously reported values for different genotypes of polyploid wheat.


Assuntos
Técnicas de Transferência de Genes , Genes de Plantas , Plantas Geneticamente Modificadas/genética , Tetraploidia , Triticum/genética , Biolística , Proteínas de Fluorescência Verde/genética , Resistência a Herbicidas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/fisiologia , Técnicas de Cultura de Tecidos , Triticum/efeitos dos fármacos , Triticum/embriologia
10.
Nat Biotechnol ; 38(8): 944-946, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32341562

RESUMO

Autoluminescent plants engineered to express a bacterial bioluminescence gene cluster in plastids have not been widely adopted because of low light output. We engineered tobacco plants with a fungal bioluminescence system that converts caffeic acid (present in all plants) into luciferin and report self-sustained luminescence that is visible to the naked eye. Our findings could underpin development of a suite of imaging tools for plants.


Assuntos
Luciferina de Vaga-Lumes/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ácidos Cafeicos/metabolismo , Fungos/genética , Fungos/metabolismo
11.
Plants (Basel) ; 9(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326167

RESUMO

Artemisinin-based drugs are the most effective medicine for the malaria treatment. To date, the main method of artemisinin production is its extraction from wormwood plants Artemisia annua L. Due to the limitation of this source, considerable efforts are now directed to the development of methods for artemisinin production using heterologous expression systems. Artemisinin is a sesquiterpene lactone, synthesized through the cyclization of farnesyl diphosphate involved in other sesquiterpene biosynthetic systems. Chrysanthemum species as well as A. annua, belong to Asteraceae family, and had been characterized by containing highly content of sesquiterpenes and their precursors. This makes chrysanthemum a promising target for the production of artemisinin in heterologous host plants. Chrysanthemum (C. morifolium Ramat.) was transformed by Agrobacterium tumefaciens carrying with the binary vectors p1240 and p1250, bearing artemisinin biosynthesis genes coding: amorpha-4,11-diene synthase, artemisinic aldehyde Δ11(13) reductase, amorpha-4,11-diene monooxygenase (p1240 was targeted to the mitochondria and p1250 was targeted to the cytosol), cytochrome P450 reductase from A. annua, as well as yeast truncated 3-hydroxy-3-methylglutarylcoenzyme A reductase. This study obtained 8 kanamycin-resistant lines after transformation with the p1240 and 2 lines from p1250. All target genes were detected in 2 and 1 transgenic lines of the 2 vectors. The transformation frequency of all target genes were 0.33% and 0.17% for p1240 and p1250, relative to the total transformed explant numbers. RT-PCR analysis revealed the transcription of all transferred genes in two lines obtained after transformation with the p1240 vector, confirming the possibility of transferring genetic modules encoding entire biochemical pathways into the chrysanthemum genome. This holds promise for the development of a chrysanthemum-based expression system to produce non-protein substances, such as artemisinin.

12.
Front Plant Sci ; 10: 388, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984230

RESUMO

The presence of antibiotic resistance and other marker genes in genetically modified plants causes concern in society because of perceived risks for the environment and human health. The creation of transgenic plants that do not contain foreign genetic material, especially that of bacterial and viral origin, largely alleviates the tension and makes the plants potentially more attractive for consumers. To produce marker-free transgenic apple plants, we used the pMF1 vector, which combines Zygosaccharomyces rouxii recombinaseR and a CodA-nptII bifunctional selectable gene. The thaumatin II gene from the tropical plant Thaumatococcus daniellii, which is under the control of the plant E8 gene (a predominantly fruit-specific promoter) and rbsS3A terminator, was taken as the gene of interest for modification of the fruit taste and enhancing its sweetness. Exploitation of this gene in our laboratory has allowed enhancing the sweetness, as well as improving the taste characteristics, of fruits and vegetables of plants such as strawberry, carrot, tomato and pear. We have obtained three independent transgenic apple lines that have been analyzed by PCR and Southern blot analyses for the presence of T-DNA sequences. Two of them contained a partial sequence of the T-DNA. With one line containing the full insert we then used a delayed strategy for the selection of marker-free plants. After induction of recombinase activity in leaf explants on selective media with 5-fluorocytosine (5-FC) we obtained more than 30 sublines, most of which lost their resistance to kanamycin. Most of the apple sublines showed the expression of the supersweet protein gene in a wide range of levels as detected by RNA accumulation. The plants from the group with the highest transcript level were propagated and grafted onto dwarf rootstocks for early fruit production for future estimates of protein levels and organoleptic analyses. Thus, we developed a protocol that allowed the production of marker-free apple plants expressing the supersweet protein.

13.
Front Plant Sci ; 10: 286, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915093

RESUMO

In modern horticulture Plum pox virus (PPV) imposes serious threats to commercial plantations of a wide range of fruit species belonging to genera Prunus. Given the lack of natural genetic resources, which display reliable resistance to PPV infection, there has been considerable interest in using genetic engineering methods for targeted genome modification of stone fruit trees to control Sharka disease caused by PPV. Among the many virus defense mechanisms, RNA interference is shown to be the most promising transgenic disease-control strategy in plant biotechnology. The present study describes the production of transgenic PPV resistant European plum "Startovaya" (P. domestica L.) through the Agrobacterium-mediated transformation of in vitro leaf explants. Due to organogenesis from leaves, the established protocol allows the genetic engineering of the plum genome without losing clonal fidelity of original cultivar. Seven independent transgenic plum lines containing the self-complementary fragments of PPV-CP gene sequence separated by a PDK intron were generated using hpt as a selective gene and uidA as a reporter gene. The transformation was verified through the histochemical staining for ß-glucuronidase activity, PCR amplification of appropriate vector products from isolated genomic DNA and Southern blot analysis of hairpin PPV-CP gene fragments. To clarify the virus resistance, plum buds infected by PPV-M strain were grafted onto 1-year-old transgenic plants, which further were grown into mature trees in the greenhouse. As evaluated by RT-PCR, DAS-ELISA, Western blot, ImmunoStrip test, and visual observations, GM plum trees remained uninfected over 9 years. Infected branches that developed from grafted buds displayed obvious symptoms of Sharka disease over the years and maintained the high level of virus accumulation, whereby host transgenic trees had been constantly challenged with the pathogen. Since the virus was unable to spread to transgenic tissues, the stable expression of PPV-derived gene construct encoding intron-spliced hairpin RNAs provided a highly effective protection of plum trees against permanent viral infection. At the same time, this observation indicates the lack of the systemic spread of resistance from GM tissues to an infected plum graft even after years of joint growth.

14.
Int J Mol Sci ; 19(12)2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30544968

RESUMO

Jasmonates are plant hormones that are involved in the regulation of different aspects of plant life, wherein their functions and molecular mechanisms of action in wheat are still poorly studied. With the aim of gaining more insights into the role of jasmonic acid (JA) in wheat growth, development, and responses to environmental stresses, we have generated transgenic bread wheat plants overexpressing Arabidopsis 12-OXOPHYTODIENOATE REDUCTASE 3 (AtOPR3), one of the key genes of the JA biosynthesis pathway. Analysis of transgenic plants showed that AtOPR3 overexpression affects wheat development, including germination, growth, flowering time, senescence, and alters tolerance to environmental stresses. Transgenic wheat plants with high AtOPR3 expression levels have increased basal levels of JA, and up-regulated expression of ALLENE OXIDE SYNTHASE, a jasmonate biosynthesis pathway gene that is known to be regulated by a positive feedback loop that maintains and boosts JA levels. Transgenic wheat plants with high AtOPR3 expression levels are characterized by delayed germination, slower growth, late flowering and senescence, and improved tolerance to short-term freezing. The work demonstrates that genetic modification of the jasmonate pathway is a suitable tool for the modulation of developmental traits and stress responses in wheat.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/fisiologia , Congelamento , Triticum/metabolismo , Triticum/fisiologia , Arabidopsis/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Triticum/genética
15.
BMC Biotechnol ; 18(1): 68, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30352590

RESUMO

BACKGROUND: Domesticated einkorn (Triticum monococcum L.) is one of the oldest cultivated cereal crops in the world. Its small genome size (~ 5.7 GB), low ploidy (2n = 2x = 14, AmAm) and high genetic polymorphism make this species very attractive for use as a diploid model for understanding the genomics and proteomics of Triticeae. Einkorn, however, is still a recalcitrant monocotyledonous species for the application of modern biotechnologies, including transgenesis. This paper reports the factors that may influence transgene delivery, integration, expression and inheritance in einkorn. RESULTS: In this study, we report the successful genetic transformation of einkorn using biolistic-mediated DNA delivery. Immature embryo-derived tissues of spring einkorn were bombarded with a plasmid containing the reporter gene GFP (green fluorescent protein) driven by the rice actin promoter (act1) and the selectable bar gene (bialaphos resistance gene) driven by the maize ubiquitin promoter (ubi1). Adjustments to various parameters such as gas pressure, microcarrier size and developmental stage of target tissue were essential for successful transient and stable transformation. Bombarded einkorn tissues are recalcitrant to regenerating plants, but certain modifications of the culture medium have been shown to increase the production of transgenic events. In various experiments, independent transgenic plants were produced at frequencies ranging from 0.0 to 0.6%. Molecular analysis, marker gene expression and herbicide treatment demonstrated that gfp/bar genes were stably integrated into the einkorn genome and successfully inherited over several generations. The transgenes, as dominant loci, segregated in both Mendelian and non-Mendelian fashion due to multiple insertions. Fertile homozygous T1-T2 populations of transgenic einkorn that are resistant to herbicides were selected. CONCLUSION: To the best of our knowledge, this is the first report of the production of genetically modified einkorn plants. We believe that the results of our research could be a starting point for the application of the current biotechnological-based technologies, such as transgenesis and genome editing, to accelerate comparative functional genomics in einkorn and other cereals.


Assuntos
Diploide , Transformação Genética , Triticum/genética , Genes Reporter , Marcadores Genéticos , Tamanho do Genoma , Genoma de Planta , Proteínas de Fluorescência Verde/genética , Herbicidas/farmacologia , Oryza/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Triticum/efeitos dos fármacos
16.
Front Chem ; 6: 304, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30140670

RESUMO

To date, the expression of recombinant proteins in transgenic plants is becoming a powerful alternative to classical expression methods. Special efforts are directed to the development of contained cultivation systems based on cell culture or rhyzosecretion, which reliably prevents the heterologous DNA releasing into the environment. A promising object for the development of such systems is the tiny aquatic plant of Wolffia arrhiza, which can be used as a dipped culture in bioreactors. Herein we have expressed the human granulocyte colony-stimulating factor (hG-CSF) in nuclear-transformed Wolffia. The nucleotide sequence of hG-CSF was optimized for expression in Wolffia and cloned into the vector pCamGCSF downstream of double CaMV 35S promoter. Wolffia plants were successfully transformed and 34 independent transgenic lines with hG-CSF gene were obtained, PCR and Southern blot analysis confirmed the transgenic origin of these lines. Western blot analysis revealed accumulation of the target protein in 33 transgenic lines. Quantitative ELISA of protein extracts from these lines showed hG-CSF accumulation up to 35.5 mg/kg of Wolffia fresh weight (0.194% of total soluble protein). This relatively high yield holds promise for the development of Wolffia-based expression system in strictly controlled format to produce various recombinant proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...